• Company
  • News
  • Investors
  • Contacts
  • Careers
polypeptide-logopolypeptide-logologo-mobilepolypeptide-logo
  • Services
    • GMP Compliance
    • Pre-GMP development
    • Production
    • Quality Assurance
    • Quality control
    • Regulatory Support
  • Commercial Manufacturing
    • Commercial products at PolyPeptide
    • Late stage development
    • Process development and optimization
    • Capacity and Capabilities
  • Custom R&D
    • Custom Research Grade Peptides
    • Radiolabeled peptide
  • Generic peptides
  • Oligos
  • Services
    • GMP Compliance
    • Pre-GMP development
    • Production
    • Quality Assurance
    • Quality control
    • Regulatory Support
  • Commercial Manufacturing
    • Commercial products at PolyPeptide
    • Late stage development
    • Process development and optimization
    • Capacity and Capabilities
  • Custom R&D
    • Custom Research Grade Peptides
    • Radiolabeled peptide
  • Generic peptides
  • Oligos
✕
  • Home
  • News
  • Expert views
  • Sustainable, cost-efficient manufacturing of therapeutic peptides using chemo-enzymatic peptide synthesis (CEPS)

Sustainable, cost-efficient manufacturing of therapeutic peptides using chemo-enzymatic peptide synthesis (CEPS)

22 November 2019
Expert views

Using a large scale biocatalytic manufacture of the antidiabetic exenatide as an example, we report that chemo-enzymatic peptide synthesis (CEPS) constitutes an efficient method for sustainable manufacturing of therapeutic peptides. […]

Using a large scale biocatalytic manufacture of the antidiabetic exenatide as an example, we report that chemo-enzymatic peptide synthesis (CEPS) constitutes an efficient method for sustainable manufacturing of therapeutic peptides. The H-22-39-NH2 and H-1-21-O-Cam-L-NH2 exenatide fragments requisite for the enzymatic ligations were synthesized by solid-phase peptide synthesis (SPPS) methods and in ligations of these fragments catalyzed by omniligase-1, a broad specificity ligase engineered from subtilisin BPN’, we found that at pH 9.1/37 °C a substantial formation of deamidation impurities occurs. Consequently, a more robust ligation protocol (pH 7.5, rt, 10% MeCN as co-solvent) was developed and used in efficient scale-up ligations of the two fragments both as crude peptides as well as in their purified forms. Further, the aromatic 4-hydroxymethylbenzoic acid (HMBA) was evaluated as a more robust alternative for the carboxamidomethyl (O-Cam linker), which exhibited limited stability during some steps of the elevated temperature (ET) SPPS of the H-1-21-O-Cam-L-NH2 fragment.

J. Pawlas, T. Nuijens, J. Persson, T. Svensson, M. Schmidt, A. Toplak, M. Nilsson and J. H. Rasmussen, Green Chem., 2019, 21, 6451,

DOI: 10.1039/c9gc03600h

Read more

Back to news

Related posts

19 December 2025

PolyPeptide showcases leadership in sustainable peptide manufacturing with two landmark publications


Read more
27 November 2025

PolyPeptide’s Approach to Process Intensification: Tackling the increasing Peptide Demand


Read more
13 August 2025

Backbone Protecting Groups for Enhanced Peptide and Protein Synthesis


Read more

Polypeptide Group

INFO

COMPANY
LEADERSHIP
CONTACTS
CAREERS

NEWS

LATEST NEWS
SIGN UP FOR NEWS
EVENTS

SOCIALS

LINKEDIN
YOUTUBE
© Confidentiality 2026 PolyPeptide Group • Cookie Policy • Sitemap • Privacy policy
    • Company
    • News
    • Investors
    • Contacts
    • Careers